If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y+y^2=200
We move all terms to the left:
8y+y^2-(200)=0
a = 1; b = 8; c = -200;
Δ = b2-4ac
Δ = 82-4·1·(-200)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{6}}{2*1}=\frac{-8-12\sqrt{6}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{6}}{2*1}=\frac{-8+12\sqrt{6}}{2} $
| 5=40/p | | 3x+14=299 | | 6x+15x-38=-10x-16 | | 6x/7-2x21=25/21 | | 10=50/c | | Y=1.3x-1.9 | | m+16-2m+3m=4-24+16 | | 53-k=38 | | -1x+270=-2x-100 | | 7j+1=99 | | 72/s=9 | | 61-z=28 | | 61−z=28 | | k/6+86=94 | | 4(3x-1)=3+x-11 | | k6+ 86=94 | | 30=6x(5) | | 4w+3=31-3w | | 17-3a=5a+16a | | 15x+18=-19x-6 | | 7x-10x=10 | | 9(45x-7)=3(20+2) | | 11u-10u=18 | | 2x-(3x+8)=-5x-(-4x+10) | | 6s−s=15 | | -3x-12+5x+15=6 | | 13b−8b=20 | | 4(5x+3)=-9 | | 7u+2u=9 | | -5(8x+3)-2x=-2 | | 2=4t=14 | | 1/4(-3x-1)=-1 |